

SAFER BY MOLECULAR DESIGN APPROACH APPLIED TO CuO CASE STUDY

Anna Luisa Costa

CNR-ISTEC, National Research Council, Institute of Science and Technology for Ceramics Via Granarolo 64 Faenza, Italy,,

anna.costa@istec.cnr.it

OUTILINE

□ SAFETY ISSUES APPLIED TO NANOMATERIALS

□ SAFETY BY DESIGN (SbyD) STRATEGIES: SANOWORK PROJECT

□ SbyD STRATEGY APPLIED TO CuO CASE STUDY: SUN PROJECT

SAFETY

SAFETY BY DESIGN (SbyD)

DEFINITION

ENGINEERING of **NANOMANUFACTURING PROCESS** or **PRODUCT** with specific attention to design out risks rather than address them when they occur

SAFETY BY PROCESS DESIGN

Analytical / automation tools focused on preventing the release of nanomaterial classified as "highly hazardous"

SAFETY BY MOLECULAR DESIGN

C istec

Molecular / Structural design strategies focused on controlling risk determinant properties

SOURCE TO EFFECT FRAMEWORK

SYNTHETIC IDENTITY (BORN TO BE.....)

(ENVIRONMENTAL TRANSPORT, BIOKINETICS, DOSIMETRY)

EXPOSURE CRITERIA

Evolution of PCHEMS in Lifecycle and Testing Media; Exposure related PCHEMS

Intrinsic physicochemical properties (PCHEMS)

DESIGN CRITERIA

SYSTEM IDENTITY

MODES of ACTION

HAZARD CRITERIA

PCHEMS triggering early effects PRO-OXIDATIVE POTENTIAL, TRANSPORT and RELEASE of transition metal ions / impurities / toxicants by the surface. BIOPHYSICAL INTERACTION with Extra, Intra and Surface CELLULAR components

IN VITRO / IN VIVO TOXICITY

SAFETY BY DESIGN STRATEGIES EVALUATION.....considering for each strategies the total amount of positive and detrimental effect due to their introduction, normalisingfor the total amount of experiments carried on

CuO CASE STUDY FROM SUN PROJECT

Sustainable Nanotechnologies Project

NMP4-LA-2013-604305 From Oct 2013 to March 2017

WP7: Safe production, handling and disposal

CuO NPs are synthesized by sol-gel / pyrolysis by Plasmachem

istec

Antibacterial wood paints

CuO INTRINSIC PROPERTIES

Properties	Results
Crystallite size, nm	ca. 15
BET, m ² /g	45 ± 5
Stabilizer	No organic stabilizer
Form	Dry powder
Colour	Black
Phase	Monoclinic

BET equivalent diameter: \cong 20 nm (dBET = 6/SSA • ρ)

	FE - SEM
Micro	metric aggregates
	Alog = 100.00 k X 200 nm EHT = 2.00 kV 1 Signal A = inLens Device the test of test of the test of test of the test of
S	
5	Mog = 50.00 K X 1 µm EHT = 6.00 k/ 1 Signal A = SE2 Data is 0 ct 2014 opµt hs: Depop Fix WD = 3.1 mm 3000 µm Specimen I = -1567 pA mm = 162450
5	TEM
tabilizer	
der	TEM mean diameter: 10nm
,	
nic	Contraction of the second
	from SUN Deliverable 1.4
Im	
	150 nm

SbyD STRATEGY APPLIED TO CuO CASE STUDY

CuO CASE STUDY

Effect of PO₄³⁻ buffer dispersing media

The specific interaction of PO_4^{3-} ions with CuO surface invert positive sign of CuO water dispersion, a destabilization occurred, despite to the high value of absolute Z potential

Effect of surface modifiers (H₂O medium)

Sample	рН	d _{DLS} (nm)	ζ-pot _{ELS} (mV)
CuO_101	6.4	1093	-9
CuO_102_CIT	6.5	368	-18
CuO_103_PVP	6.5	797	-8
CuO_104_PEI	6.5	247	+28
CuO_105_ASC	6.5	122	-17

Samples coated by **ionic agents** (CIT, ASC, PEI) resulted better dispersed showing values coherent with the charge given by the capping agent.

Neutral PVP did not improve significantly the dispersion of CuO NPs and as expected, did not modify zeta potential of pristine sample.

Dilution in saline media

Dulbecco buffered saline (D8662) contains all the salts of the complete media excepting proteins and antibiotics

Sample	H ₂ O				D8662			
	рН	d _{DLS} (nm)	ζ-pot _{ELS} (mV)	рН	d _{DLS} (nm)	ζ-pot _{ELS} (mV)		
CuO_101	6.5	1093± 50	-9.1 ± 0.4	7.5	2756± 347	-20,7± 1.4		
CuO_102_CIT	6.5	368± 10	-18.0± 0.3	7.4	271± 43	-35.8± 2.9		
CuO_103_PVP	6.5	797± 84	-8.1± 2.3	7.4	2765± 432	-21.1± 1.5		
CuO_104_PEI	6.5	247± 14	+28.3± 0.7	7.4	209± 16	+25.4± 1.9		
CuO_105_ASC	6.4	122± 1.4	-17.4± 0.3	7.4	1314± 525	-24.5± 2.8		

In Buffered saline medium, the increase of ionic strength induced a COLLOIDAL DESTABILIZATION as confirmed by the increased agglomeration degree of non modified, PVP and even ASC modified sample, despite to the increase of negative zeta potential.

istec

Dilution in saline media

AFW and AMW containing Mg²⁺ and Ca²⁺, more than 10 times concentrated in AMW than AFW

Sample	H ₂ O			AFW,	рН 8.1	AMW, pH 8.1	
	рН	d _{DLS} (nm)	ζ-pot _{ELS} (mV)	d _{DLS} (nm)	ζ-pot _{ELS} (mV)	d _{DLS} (nm)	ζ-pot _{ELS} (mV)
CuO_101	6.5	1093	-9.1	1663± 210	-3.5± 0.4	1281± 393	+7.6± 0.4
CuO_102_CIT	6.5	368	-18.0	1050± 16	+3.6± 0.4	1062± 159	+4.5± 0.7
CuO_103_PVP	6.5	797	-8.1	1159± 256	+1.6± 0.3	1661± 580	+6.5± 1.5
CuO_104_PEI	6.5	247	+28.3	675± 199	+20.9± 0.9	1281± 168	+10.1± 1.1
CuO_105_ASC	6.4	122	-17.4	1293± 278	-8.1± 0.4	1234± 25	+2.7± 0.6

.n artificial fresh and marine water, the increase of ionic strength induced a **COLLOIDAL DESTABILIZATION** as confirmed by the **increased agglomeration degree** particularly evident for samples that **reversed Z potential crossing the i.e.p**, due to the presence of Mg²⁺ and Ca²⁺ cations specifically adsorbed on metal oxide colloidal phases.

Dilution in complete in vitro media: MEM / DMEM

Protein coating on nanoparticles

 γ_{DLS} and ζ_{ELS} data in MEM and DMEM e levelled off on data of media alone, but this information does not reflect potentially transformation occurred at dispersion state during evolution from synthetic to biological identity and possible consequence on the bioavailability of nano fraction.

Sample	ΜΕΜ			DMEM		
	рН	d _{DLS} (nm)	ζ-pot _{ELS} (mV)	рН	d _{DLS} (nm)	ζ-pot _{ELS} (mV)
CuO_101	8.2	47	-10	8	55	-8
CuO_102_CIT	8.2	89	-10	7.9	37	-10
CuO_103_PVP	8.2	44	-10	7.9	53	-9
CuO_104_PEI	8.2	46	-10	7.9	45	-10
CuO_105_ASC	8.2	52	-10	7.9	73	-9
MEM	7.6	21	-10	7.9	-	-11

The **stabilisation** in in vitro media is confirmed by sedimentation velocity measured by Centrifugal Separation Analysi (CSA); only CuO PEI sample seems to decrease its colloidal stability

istec

<u>istec</u>

CuO NPs

CuO NPs

Ionic fraction (Cu²⁺)

Sample	Cu ²⁺ /CuO (%) at 24h, 37°C							
Sample	MilliQ	D8662	DMEM	MEM				
CuO_101	0.18	<0.31	67.41	59.91				
CuO_102_CIT	1.98	1.81	69.19	55.22				
CuO_103_PVP	0.23	<0.33	66.93	34.00				
CuO_104_PEI	2.84	2.55	66.01	43.06				
CuO_105_ASC	1.99	<0.33	65.39	48.13				
pH range : 6.5 - 8								

100 mg/L at T = RT to 37° C

for 1 – 24 h

or 50 mg/L

10 g/L

Centrifugation

RESULTS

In protein free media **the dissolution stays below few unit percent** with an high dissolution for ionic Sabilised particle.

ICP-OES

Chelating effect of ammino-acid determines an <u>abrupt increase of Cu²⁺</u> <u>ion content</u>, not pH justified

METHOD

Ion speciation (electroanalytical meas.)

µAutolab FRA2 Potentiostat

TECHNIQUES

- Cyclic Voltammetry (CV)
- Reduction Potential Steps
- AGNES (Using Hg-coated UMEs)

It was verified that it is possible to estimate the unknown concentration of Cu(II) ions in KCl on the 0.6 to 5 mmol L^{-1} range (10⁻² ppm).

Ion speciation (electroanalytical meas.)

KCI at the same resistivity as $DMEM + CuCl_2$

DMEM + $CuCl_2$

istec

PRELIMINARY RESULTS

Measurement made on DMEM alone did not cause any obvious peak to appear

INDIRECT EVIDENCE OF IONS SPECIATION In the presence of DMEM is necessary, up to about 5 mmol L⁻¹ of Cu^{2+} ions to observe a weak oxidation peak. The very lower sensitivity in DMEM if compared with KCL can be explained by the chelating action of amminoacids vs Cu^{2+} ions

□ A source to effect framework was provided and established a platform for the definition and evaluation of SbyD strategies

□ The results provided useful data to support the assessment of nano-bio interaction and make hypothesis on mechanism with the real possibility to act on molecular design and drive adverse biological effect.

Further investigation and non testing approaches (computational modelling, read-across) needed to validate mechanicistic hypothesis and develop preventive / predictive tools

AKNOWLEDGEMENTS

CNR-ISTEC

Nanotechnologies and Colloidal Processing Group

> Carlo Baldisserri Magda Blosi Anna Luisa Costa Davide Gardini Simona Ortelli Luca Viale

> > *and* Michele Dondi

UNIVERSITY CA' FOSCARI

Department of Environmental Sciences, Informatics and Statistics (DAIS)

> Andrea Brunelli, Elena Badetti, Alessandro Bonetto, Danail Hristozov Antonio Marcomini

Thank you very much for your attention!

Sustainable Nanotechnologies Project

The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under Grant Agreement n. 280716 and Grant Agreement NMP4-LA-2013-604305